By Aimpoint Digital, A Gurobi Alliance Premier Service Partner
This article originally appeared on aimpointdigital.com.
In part one of our two-part series on utilizing Gurobi in Snowflake, we demonstrated how Gurobi models can be executed within Snowflake via Snowpark Container Services (SPCS). This unlocks the potential of advanced decision science workflows for many applications, like:
In this blog, we will discuss how the process can be further streamlined using Snowsight. Snowsight is the Snowflake web interface that provides a unified access for executing queries in SQL or Python. With the help of the PuLP package, which is available via the Snowflake Anaconda Distribution, we can construct the optimization model, transmit it to a REST API hosted in SPCS for execution, and retrieve the model results — all coordinated within the Snowflake Snowsight environment.
Snowsight streamlines optimization model execution by offering improved usability, faster execution, and enhanced auditability. Your optimization tasks can seamlessly integrate into Snowflake’s environment, leveraging SPCS services for efficient processing, all while maintaining comprehensive tracking and auditing capabilities within Snowsight.
Running models in Snowsight involves transmitting them to SPCS. This is essential because as of March 2024, Gurobi models can only be executed in the Snowflake ecosystem using SPCS.
1. Build a Docker image that:
2. Define the Snowpark Container Service through an appropriate YAML file. The file includes the required configurations, settings, and parameters needed to execute Gurobi models in your Snowflake account.
3. Create the SPCS Service. You will need:
4. Define your Gurobi model in a Python worksheet in Snowsight using PuLP. PuLP is available as one of the default packages listed in the Snowflake Anaconda Distribution.
5. Run the model by invoking a Snowflake User-Defined Function (UDF) that sends the PuLP model as a dictionary to the REST API.
6. The REST API will initialize the compute pool and solve the optimization model.
7. Continue your work in the Python worksheet as usual with the JSON results returned by the UDF.
Follow Snowflake’s quickstarts guide to complete the initial SPCS setup. Parts 2, 3, and 5 from the guide provide a detailed overview of the SPCS infrastructure and step-by-step instructions on how to get started. The following bullet points provide valuable tips to assist you in setting up the Gurobi solver API within SPCS and executing PuLP models seamlessly in Snowsight.
Step 1: Setting up Docker image
The script below is the REST API implementation using Flask:
A few things to note from the two code snippets above:
Step 2: Defining the YAML File for Snowpark Container Services
Notes on Gurobi license: For comprehensive details regarding licensing terms and permissions, we recommend visiting this website or reaching out to Gurobi directly.
Once you configured the YAML file, make sure to create secret objects in a Snowflake SQL worksheet. The secrets object below should correspond to each of the snowflakeSecretlocations listed in the YAML file:
Step 3: Running the API from a Snowflake UDF
After deploying your API Service to a compute pool, you will need to encapsulate it within a Snowflake UDF for use in a Python worksheet:
Make sure that the UDF’s input and output data types match with what you had set up in the Python REST API script. Similarly, ensure that the API endpoint listed in the UDF is consistent with how you had defined it in the @app.route which in this case is /optimize.
To use the UDF above, you can simply call the UDF name in a Snowsight Python worksheet:
df[‘MODEL’] is a column which consists of the PuLP model object dictionary. For more details on how this would fully integrate with the optimization model code, you can view the run_model() method on the section below.
After deploying your REST API Service to a compute pool and creating a corresponding UDF, you can call this UDF from a Python worksheet in Snowsight to solve your PuLP model. Before initiating the PuLP model, please make sure that you have imported the PuLP package from the ‘Anaconda Packages’ tab, as shown in figure 2.
Once PuLP is confirmed as one of the installed packages, proceed to create your PuLP model. A sample PuLP model is defined in the Python worksheet below.
The build_model() method generates a Python dictionary representing the PuLP model. You can insert this model dictionary into a Snowpark session dataframe and use the call_udf Snowpark function on the column containing the model dictionary. This function retrieves the UDF you previously created for the REST API service.
The run_model() method returns a dataframe that can be appended to an existing database, allowing you to maintain a record of your model runs over time (see Figure 3). This integration not only streamlines monitoring, tracking, and logging of your optimization models but also ensures a cohesive approach to the lifecycle management of your optimization models.
Discover introductory-level courses, games, and other resources designed for data scientists here.
GUROBI NEWSLETTER
Latest news and releases
Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.
Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.
Cookie | Duration | Description |
---|---|---|
_biz_flagsA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_pendingA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_sid | 30 minutes | This cookie is set by Bizible, to store the user's session id. |
ARRAffinity | session | ARRAffinity cookie is set by Azure app service, and allows the service to choose the right instance established by a user to deliver subsequent requests made by that user. |
ARRAffinitySameSite | session | This cookie is set by Windows Azure cloud, and is used for load balancing to make sure the visitor page requests are routed to the same server in any browsing session. |
BIGipServersj02web-nginx-app_https | session | NGINX cookie |
cookielawinfo-checkbox-advertisement | 1 year | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
CookieLawInfoConsent | 1 year | Records the default button state of the corresponding category & the status of CCPA. It works only in coordination with the primary cookie. |
elementor | never | This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time. |
JSESSIONID | session | New Relic uses this cookie to store a session identifier so that New Relic can monitor session counts for an application. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
__cf_bm | 30 minutes | This cookie, set by Cloudflare, is used to support Cloudflare Bot Management. |
_biz_nA | 1 year | Bizible sets this cookie to remember users’ settings as well as for authentication and analytics. |
_biz_uid | 1 year | This cookie is set by Bizible, to store user id on the current domain. |
_hjAbsoluteSessionInProgress | 30 minutes | Hotjar sets this cookie to detect a user's first pageview session, which is a True/False flag set by the cookie. |
_mkto_trk | 2 years | This cookie is set by Marketo. This allows a website to track visitor behavior on the sites on which the cookie is installed and to link a visitor to the recipient of an email marketing campaign, to measure campaign effectiveness. Tracking is performed anonymously until a user self-identifies by submitting a form. |
bcookie | 1 year | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser ID. |
bscookie | 1 year | LinkedIn sets this cookie to store performed actions on the website. |
doc_langsBB | 1 year | Documentation system cookie |
doc_version | 1 year | Documentation system cookie |
lang | session | LinkedIn sets this cookie to remember a user's language setting. |
lidc | 1 day | LinkedIn sets the lidc cookie to facilitate data center selection. |
UserMatchHistory | 1 month | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
whova_client_id | 10 years | Event agenda system cookie |
Cookie | Duration | Description |
---|---|---|
_gat_UA-5909815-1 | 1 minute | A variation of the _gat cookie set by Google Analytics and Google Tag Manager to allow website owners to track visitor behaviour and measure site performance. The pattern element in the name contains the unique identity number of the account or website it relates to. |
Cookie | Duration | Description |
---|---|---|
_an_uid | 7 days | 6Sense Cookie |
_BUID | 1 year | This cookie, set by Bizible, is a universal user id to identify the same user across multiple clients’ domains. |
_ga | 2 years | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors. |
_ga_* | 1 year 1 month 4 days | Google Analytics sets this cookie to store and count page views. |
_gat_UA-* | 1 minute | Google Analytics sets this cookie for user behaviour tracking. |
_gcl_au | 3 months | Provided by Google Tag Manager to experiment advertisement efficiency of websites using their services. |
_gd_session | 4 hours | This cookie is used for collecting information on users visit to the website. It collects data such as total number of visits, average time spent on the website and the pages loaded. |
_gd_visitor | 2 years | This cookie is used for collecting information on the users visit such as number of visits, average time spent on the website and the pages loaded for displaying targeted ads. |
_gid | 1 day | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_hjFirstSeen | 30 minutes | Hotjar sets this cookie to identify a new user’s first session. It stores the true/false value, indicating whether it was the first time Hotjar saw this user. |
_hjIncludedInSessionSample_* | 2 minutes | Hotjar cookie that is set to determine if a user is included in the data sampling defined by a site's daily session limit. |
_hjRecordingEnabled | never | Hotjar sets this cookie when a Recording starts and is read when the recording module is initialized, to see if the user is already in a recording in a particular session. |
_hjRecordingLastActivity | never | Hotjar sets this cookie when a user recording starts and when data is sent through the WebSocket. |
_hjSession_* | 30 minutes | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjSessionUser_* | 1 year | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjTLDTest | session | To determine the most generic cookie path that has to be used instead of the page hostname, Hotjar sets the _hjTLDTest cookie to store different URL substring alternatives until it fails. |
6suuid | 2 years | 6Sense Cookie |
AnalyticsSyncHistory | 1 month | LinkedIn cookie |
BE_CLA3 | 1 year 1 month 4 days | BrightEdge sets this cookie to enable data aggregation, analysis and report creation to assess marketing effectiveness and provide solutions for SEO, SEM and website performance. |
CONSENT | 2 years | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
dj | 10 years | DemandJump cookie |
djaimid.a28e | 2 years | DemandJump cookiean |
djaimses.a28e | 30 minutes | DemandJump cookie |
li_gc | 5 months 27 days | LinkedIn Cookie |
ln_or | 1 day | LinkedIn Cookie |
vuid | 2 years | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
Cookie | Duration | Description |
---|---|---|
__adroll | 1 year 1 month | This cookie is set by AdRoll to identify users across visits and devices. It is used by real-time bidding for advertisers to display relevant advertisements. |
__adroll_fpc | 1 year | AdRoll sets this cookie to target users with advertisements based on their browsing behaviour. |
__adroll_shared | 1 year 1 month | Adroll sets this cookie to collect information on users across different websites for relevant advertising. |
__ar_v4 | 1 year | This cookie is set under the domain DoubleClick, to place ads that point to the website in Google search results and to track conversion rates for these ads. |
_fbp | 3 months | This cookie is set by Facebook to display advertisements when either on Facebook or on a digital platform powered by Facebook advertising, after visiting the website. |
_te_ | session | Adroll cookie |
fr | 3 months | Facebook sets this cookie to show relevant advertisements to users by tracking user behaviour across the web, on sites that have Facebook pixel or Facebook social plugin. |
IDE | 1 year 24 days | Google DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile. |
li_sugr | 3 months | LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant. |
test_cookie | 15 minutes | The test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies. |
VISITOR_INFO1_LIVE | 5 months 27 days | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | session | YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |