Author: Edward Rothberg, PhD
Date: 12/7/2020

 

At Gurobi, we’re heavy consumers of processing cycles. Any candidate change to our product – the Gurobi Optimizer – goes through rigorous testing, which involves running the modified code on literally thousands of models to make sure the change doesn’t have unintended consequences. We’re constantly evaluating possible improvements, which means that we keep hundreds of machines busy nearly all the time.

Every year, we look at how we can enhance our computing infrastructure. Unfortunately, for the past four years our conclusion has always been that the machines available at the time were not significantly better than the machines we already had. At one point, we actually asked our vendor to build more of the exact same machines we bought two years earlier – so we could have a larger set of identical machines. At no point in the past four years have we gotten really excited about our future upgrade options. Fortunately, it looks like that’s finally changing, thanks to new systems from AMD and Apple.

 

New, Cutting-Edge Hardware Systems

On the AMD side, we’ve been testing their latest CPU, Rome. Gurobi performance on one core is quite strong, and parallel scaling is much better than what we’ve seen before. For most of the algorithms in Gurobi, the performance of the machine is ultimately limited by the rate at which the cores can pull data from memory. With the machines we’re used to, it only takes a few cores to saturate the memory system. These new AMD machines provide more memory bandwidth, which leads to better parallel scaling. There are limits to how much parallelism you can exploit, but you hit those limits much later on these new systems.

On the Apple front, the new M1 chip is showing quite impressive performance. The new chip, running a recompiled Gurobi binary, gives the best single-core performance of any system we’ve ever tried. Parallel scaling is quite strong as well. The new chip has eight cores, four “high-performance” cores and four “high-efficiency” (i.e., slower) cores. Scaling is limited beyond four cores, but scaling to four cores is quite strong. The chip is very new, and the software infrastructure isn’t complete right now, so unfortunately it is still too early for us to release a native binary and official support. In the meantime, however, anecdotal testing suggests that our existing Mac OS release gets over 80% of the performance of a “native” port on this new chip, which is quite remarkable for emulation.

 

Looking to the Future

There are still several reasons why we can’t yet replace our current computing resources with these systems. However, after several years of waiting, it appears that people looking to solve optimization problems faster will soon see a significant boost on the hardware front.

Guidance for Your Journey

30 Day Free Trial for Commercial Users

Start solving your most complex challenges, with the world's fastest, most feature-rich solver.

Always Free for Academics

We make it easy for students, faculty, and researchers to work with mathematical optimization.

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Academic License
Gurobi provides free, full-featured licenses for coursework, teaching, and research at degree-granting academic institutions. Academics can receive guidance and support through our Community Forum.

Search

Gurobi Optimization