Linear programming is a method for solving complex, real-life business problems, using the power of mathematics. Organizations have been applying this method for 50+ years, across nearly all industries, to optimize operational efficiency—to get the most value from their limited resources. For example:
Before you even start programming, you’ll need to collect some important information about your business problem:
Then, you need someone with mathematical and programming know-how to express this information as a mathematical model—in this case, a linear program. This requires some linear algebra and calculus skills, plus familiarity with mathematical notation and basic Python knowledge.
Not mathematically minded? Our trusted partners can handle that for you.
As a final step, you will input your linear program into a “solver” (such as the Gurobi Optimizer), and the solver quickly determines how you can best reach your goals, given your limitations, and outputs a recommended action plan that answers your specific questions.
Although there are countless ways to use linear programming, let’s look at a relatively simple one: the Furniture Factory Problem.
Imagine there’s a data scientist who’s in charge of developing a weekly production plan for a factory’s chairs and tables—two key products for this particular furniture factory.
The data scientist, using machine learning, predicts that the selling price of a chair is $45, and the selling price of a table is \$80.
Building a chair requires two critical resources:
|
Each week, the factory will have access to:
|
The data scientist estimates:
|
The challenge: To identify how many chairs and tables to make, to maximize total revenue while satisfying the resource constraints.
This is a classic linear programming challenge. Find out how it works through our helpful Linear Programming Tutorial Video Series, which walks you through the entire process.
You’ve come to the right place! We have a robust library of functional code examples and Jupyter Notebook modeling examples. These are a great way to jump in and start digging into the code and trying out your own variations.
Linear programming (LP) is a powerful framework for describing and solving optimization problems. It allows you to specify a set of decision variables, and a linear objective and a set of linear constraints on these variables.
To give a simple and widely used example, consider the problem of minimizing the cost of a selection of foods that meets all the recommended daily nutrient guidelines. The LP model would have:
Using linear algebra notation, a linear program can be described as follows:
When described in this form, the vector x represents the decision variables, the vector c captures the linear objective function, the matrix equation Ax = b specifies the linear constraints on x, and the vectors l and u give the lower and upper bounds on x.
The set of applications of linear programming is literally too long to list. It includes everything from production scheduling to web advertising optimization to clothing manufacturing. LP touches nearly every commercial industry in some way.
Linear programming was first introduced by Leonid Kantorovich in 1939 and then independently reintroduced by George Dantzig in 1947. Dantzig developed the first algorithm for solving linear programming problems, called the “simplex” method. Remarkably, this decades-old algorithm remains one of the most efficient and reliable methods for solving such problems today.
Learn more about the simplex method in practice.
The primary alternative to the simplex method is the barrier or “interior-point” method. This approach has a long history, but its popularity is due to Karmarkar’s 1984 polynomial-time complexity proof.
Interior-point methods have benefited significantly from advances in computer architecture, including the introduction of multi-core processors and SIMD instruction sets, and they are generally regarded as being faster than simplex for solving LP problems from scratch.
However, the sheer variety of different linear programming models—and the many ways linear programming is used—mean that neither algorithm dominates the other in practice. Both are important in computational linear programming.
Given that the simplex and interior-point algorithms have been solving linear programs for decades, you might expect that all solvers (which use those algorithms to solve the linear programming models) would perform the same. But this is far from the case.
Computational benchmarks—across a range of models—show wide performance and robustness variations between solvers. For example, the open-source simplex solvers CLP and GLPK are, on average, a factor of 2.5 and 58 times slower than the Gurobi simplex solver, respectively.
What explains such wide disparities between implementations of such well-established methods? The differences primarily come down to three factors.
The constraint matrices that arise in linear programming are typically extremely sparse. Sparse matrices contain very few non-zero entries. It is not unusual to find constraint matrices containing only 3 or 4 non-zero values per columns of A. The steps of both the simplex and interior-point algorithms involve a number of computations with extremely sparse matrices and extremely sparse vectors. Sparse matrices must be factored, systems of sparse linear equations must be solved using the resulting factor matrices, the factor matrices must be modified, etc. It takes years of experience in sparse numerical linear algebra and linear programming to understand the computational issues associated with building efficient sparse matrix algorithms for LP.
The second factor is careful handling of numerical errors. Whenever you solve systems of linear equations in finite-precision arithmetic, you will always get slight numerical errors in the results. A crucial part of building an efficient LP algorithm is to design effective strategies for managing such errors. Failing to do so can mean the difference between a model solving in a fraction of a second and not solving at all.
The third factor is developing effective heuristic strategies for making the variety of choices that arise in the course of the solution process. To give one example, the simplex algorithm must repeatedly pick one variable from among many to enter the basis. The strategy used can have a profound effect on the runtime of the algorithm. Differences between the different strategies are often quite subtle, and in many cases, they are simply based on empirical observations about which schemes are most effective in practice. Again, choosing effective strategies takes years of experience.
Public benchmarks of different commercial linear programming solvers demonstrate the effectiveness of the approaches that Gurobi has taken for each of these issues. For both the simplex and barrier methods, the Gurobi solver provides both higher performance and better numerical robustness than competing solvers.
This difference matters when you are solving linear programming models, but more importantly, it also provides a more solid foundation on which to build the many algorithms that rely on linear programming as a subroutine. One very important example is the branch-and-bound algorithm that is used for solving mixed integer programming (MIP) models.
Ready to learn about mixed integer programming—another key type of mathematical programming? Check out our Mixed Integer Programming (MIP) Primer as well as our Recommended Books and Blogs.
GUROBI NEWSLETTER
Latest news and releases
Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.
Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.
Cookie | Duration | Description |
---|---|---|
_biz_flagsA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_pendingA | 1 year | A Cloudflare cookie set to record users’ settings as well as for authentication and analytics. |
_biz_sid | 30 minutes | This cookie is set by Bizible, to store the user's session id. |
ARRAffinity | session | ARRAffinity cookie is set by Azure app service, and allows the service to choose the right instance established by a user to deliver subsequent requests made by that user. |
ARRAffinitySameSite | session | This cookie is set by Windows Azure cloud, and is used for load balancing to make sure the visitor page requests are routed to the same server in any browsing session. |
BIGipServersj02web-nginx-app_https | session | NGINX cookie |
cookielawinfo-checkbox-advertisement | 1 year | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
CookieLawInfoConsent | 1 year | Records the default button state of the corresponding category & the status of CCPA. It works only in coordination with the primary cookie. |
elementor | never | This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time. |
JSESSIONID | session | New Relic uses this cookie to store a session identifier so that New Relic can monitor session counts for an application. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
__cf_bm | 30 minutes | This cookie, set by Cloudflare, is used to support Cloudflare Bot Management. |
_biz_nA | 1 year | Bizible sets this cookie to remember users’ settings as well as for authentication and analytics. |
_biz_uid | 1 year | This cookie is set by Bizible, to store user id on the current domain. |
_hjAbsoluteSessionInProgress | 30 minutes | Hotjar sets this cookie to detect a user's first pageview session, which is a True/False flag set by the cookie. |
_mkto_trk | 2 years | This cookie is set by Marketo. This allows a website to track visitor behavior on the sites on which the cookie is installed and to link a visitor to the recipient of an email marketing campaign, to measure campaign effectiveness. Tracking is performed anonymously until a user self-identifies by submitting a form. |
bcookie | 1 year | LinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser ID. |
bscookie | 1 year | LinkedIn sets this cookie to store performed actions on the website. |
doc_langsBB | 1 year | Documentation system cookie |
doc_version | 1 year | Documentation system cookie |
lang | session | LinkedIn sets this cookie to remember a user's language setting. |
lidc | 1 day | LinkedIn sets the lidc cookie to facilitate data center selection. |
UserMatchHistory | 1 month | LinkedIn sets this cookie for LinkedIn Ads ID syncing. |
whova_client_id | 10 years | Event agenda system cookie |
Cookie | Duration | Description |
---|---|---|
_gat_UA-5909815-1 | 1 minute | A variation of the _gat cookie set by Google Analytics and Google Tag Manager to allow website owners to track visitor behaviour and measure site performance. The pattern element in the name contains the unique identity number of the account or website it relates to. |
Cookie | Duration | Description |
---|---|---|
_an_uid | 7 days | 6Sense Cookie |
_BUID | 1 year | This cookie, set by Bizible, is a universal user id to identify the same user across multiple clients’ domains. |
_ga | 2 years | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors. |
_ga_* | 1 year 1 month 4 days | Google Analytics sets this cookie to store and count page views. |
_gat_UA-* | 1 minute | Google Analytics sets this cookie for user behaviour tracking. |
_gcl_au | 3 months | Provided by Google Tag Manager to experiment advertisement efficiency of websites using their services. |
_gd_session | 4 hours | This cookie is used for collecting information on users visit to the website. It collects data such as total number of visits, average time spent on the website and the pages loaded. |
_gd_visitor | 2 years | This cookie is used for collecting information on the users visit such as number of visits, average time spent on the website and the pages loaded for displaying targeted ads. |
_gid | 1 day | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
_hjFirstSeen | 30 minutes | Hotjar sets this cookie to identify a new user’s first session. It stores the true/false value, indicating whether it was the first time Hotjar saw this user. |
_hjIncludedInSessionSample_* | 2 minutes | Hotjar cookie that is set to determine if a user is included in the data sampling defined by a site's daily session limit. |
_hjRecordingEnabled | never | Hotjar sets this cookie when a Recording starts and is read when the recording module is initialized, to see if the user is already in a recording in a particular session. |
_hjRecordingLastActivity | never | Hotjar sets this cookie when a user recording starts and when data is sent through the WebSocket. |
_hjSession_* | 30 minutes | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjSessionUser_* | 1 year | Hotjar cookie that is set when a user first lands on a page with the Hotjar script. It is used to persist the Hotjar User ID, unique to that site on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID. |
_hjTLDTest | session | To determine the most generic cookie path that has to be used instead of the page hostname, Hotjar sets the _hjTLDTest cookie to store different URL substring alternatives until it fails. |
6suuid | 2 years | 6Sense Cookie |
AnalyticsSyncHistory | 1 month | LinkedIn cookie |
BE_CLA3 | 1 year 1 month 4 days | BrightEdge sets this cookie to enable data aggregation, analysis and report creation to assess marketing effectiveness and provide solutions for SEO, SEM and website performance. |
CONSENT | 2 years | YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data. |
dj | 10 years | DemandJump cookie |
djaimid.a28e | 2 years | DemandJump cookiean |
djaimses.a28e | 30 minutes | DemandJump cookie |
li_gc | 5 months 27 days | LinkedIn Cookie |
ln_or | 1 day | LinkedIn Cookie |
vuid | 2 years | Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website. |
Cookie | Duration | Description |
---|---|---|
__adroll | 1 year 1 month | This cookie is set by AdRoll to identify users across visits and devices. It is used by real-time bidding for advertisers to display relevant advertisements. |
__adroll_fpc | 1 year | AdRoll sets this cookie to target users with advertisements based on their browsing behaviour. |
__adroll_shared | 1 year 1 month | Adroll sets this cookie to collect information on users across different websites for relevant advertising. |
__ar_v4 | 1 year | This cookie is set under the domain DoubleClick, to place ads that point to the website in Google search results and to track conversion rates for these ads. |
_fbp | 3 months | This cookie is set by Facebook to display advertisements when either on Facebook or on a digital platform powered by Facebook advertising, after visiting the website. |
_te_ | session | Adroll cookie |
fr | 3 months | Facebook sets this cookie to show relevant advertisements to users by tracking user behaviour across the web, on sites that have Facebook pixel or Facebook social plugin. |
IDE | 1 year 24 days | Google DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile. |
li_sugr | 3 months | LinkedIn sets this cookie to collect user behaviour data to optimise the website and make advertisements on the website more relevant. |
test_cookie | 15 minutes | The test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies. |
VISITOR_INFO1_LIVE | 5 months 27 days | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | session | YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt.innertube::nextId | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |
yt.innertube::requests | never | This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen. |