Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
bilinear_cs.cs
/* Copyright 2024, Gurobi Optimization, LLC */ /* This example formulates and solves the following simple bilinear model: maximize x subject to x + y + z <= 10 x * y <= 2 (bilinear inequality) x * z + y * z == 1 (bilinear equality) x, y, z non-negative (x integral in second version) */ using System; using Gurobi; class bilinear_cs { static void Main() { try { GRBEnv env = new GRBEnv("bilinear.log"); GRBModel model = new GRBModel(env); // Create variables GRBVar x = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "x"); GRBVar y = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "y"); GRBVar z = model.AddVar(0.0, GRB.INFINITY, 0.0, GRB.CONTINUOUS, "z"); // Set objective GRBLinExpr obj = x; model.SetObjective(obj, GRB.MAXIMIZE); // Add linear constraint: x + y + z <= 10 model.AddConstr(x + y + z <= 10, "c0"); // Add bilinear inequality: x * y <= 2 model.AddQConstr(x*y <= 2, "bilinear0"); // Add bilinear equality: x * z + y * z == 1 model.AddQConstr(x*z + y*z == 1, "bilinear1"); // Optimize model model.Optimize(); Console.WriteLine(x.VarName + " " + x.X); Console.WriteLine(y.VarName + " " + y.X); Console.WriteLine(z.VarName + " " + z.X); Console.WriteLine("Obj: " + model.ObjVal + " " + obj.Value); x.Set(GRB.CharAttr.VType, GRB.INTEGER); model.Optimize(); Console.WriteLine(x.VarName + " " + x.X); Console.WriteLine(y.VarName + " " + y.X); Console.WriteLine(z.VarName + " " + z.X); Console.WriteLine("Obj: " + model.ObjVal + " " + obj.Value); // Dispose of model and env model.Dispose(); env.Dispose(); } catch (GRBException e) { Console.WriteLine("Error code: " + e.ErrorCode + ". " + e.Message); } } }